This article was downloaded by: On: 24 January 2011 Access details: Access Details: Free Access Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Journal of Macromolecular Science, Part A

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713597274

MÖSsbauer Spectroscopic Study of Fecl₃ Complexes of Poly(*N*-Methyl-2,5-Pyrrolylene), Poly(2,5-Thienylene), and Poly(3-Methyl-2,5-Thienylene) Prepared by Ni-Catalyzed Polycondensation

Takakazu Yamamoto^a; Kenichi Sanechika^a; Hiroshi Sakai^b

^a Research Laboratory of Resources Utilization Tokyo, Institute of Technology, Midori-ku, Yokohama, Japan ^b Department of Chemistry, Hiroshima University, Naka-ku, Hiroshima, Japan

To cite this Article Yamamoto, Takakazu , Sanechika, Kenichi and Sakai, Hiroshi(1990) 'MÖSsbauer Spectroscopic Study of Fecl₃ Complexes of Poly(*N*-Methyl-2,5-Pyrrolylene), Poly(2,5-Thienylene), and Poly(3-Methyl-2,5-Thienylene) Prepared by Ni-Catalyzed Polycondensation', Journal of Macromolecular Science, Part A, 27: 9, 1147 — 1155

To link to this Article: DOI: 10.1080/00222339009349682 URL: http://dx.doi.org/10.1080/00222339009349682

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

J. MACROMOL. SCI.-CHEM., A27(9-11), pp. 1147-1155 (1990)

MÖSSBAUER SPECTROSCOPIC STUDY OF FeCI₃ COMPLEXES OF POLY(*N*-METHYL-2,5-PYRROLYLENE), POLY(2,5-THIENYLENE), AND POLY(3-METHYL-2,5-THIENYLENE) PREPARED BY NI-CATALYZED POLYCONDENSATION

TAKAKAZU YAMAMOTO* and KENICHI SANECHIKA

Research Laboratory of Resources Utilization Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku, Yokohama 227, Japan

HIROSHI SAKAI

Department of Chemistry Hiroshima University 1-1-89 Higashi-senda, Naka-ku, Hiroshima 730, Japan

ABSTRACT

Reaction of FeCl₃ with poly(N-methyl-2,5-pyrrolylene) (PNMPy), poly(2,5-thienylene) (PTh), and poly(3-methyl-2,5-thienylene) (P3MeTh) caused reduction of FeCl₃ to afford Fe²⁺ species. Variable temperature Mössbauer spectra of the reaction systems indicated formation of FeCl₂ and FeCl₄. The latter is regarded as a counteranion for the cation delocalized along the π -conjugated polymer chain.

INTRODUCTION

Electrically conducting π -conjugated polymers have attracted the attention of researchers in various fields of science [1-4]. A variety of

1147

Copyright © 1991 by Marcel Dekker, Inc.

methods for preparing the π -conjugated polymers have been developed and the doping behaviors of the polymers have been investigated.

We previously reported the application of a Ni-catalyzed C-C coupling reaction [5] in the preparation of π -conjugated polymers [6-8].

$$X-Ar-X + Mg \rightarrow X-Ar-MgX \xrightarrow{NiL_n} (Ar)$$

where $(Ar)_n = poly(p-phenylene)$, poly(2,5-thienylene), poly(3-methyl-2,5-thienylene), etc. The method was also developed by other research groups, and polymers like poly(N-methyl-2,5-pyrrolylene) have been reported [9].

We now report Mössbauer spectroscopic studies of the doping behavior of the following π -conjugated polymers which are composed of recurring 5-membered rings.

Since the polymers are electron rich, reactions of these polymers with $FeCl_3$ results in removal of an electron from the polymer by $FeCl_3$. Thus, a p-type doped polymer with a cationic carrier in the polymer chain and a reduced iron ion (Fe^{2+}) is produced. The $FeCl_3$ -doped polymers were found to be semiconductors [10].

EXPERIMENTAL

Materials

PNMPy [9], PTh [7], and P3MeTh [7] were prepared according to literature methods. The FeCl₃ doping of the polymers was carried out by dipping the powdery polymer in a saturated ethereal solution of anhydrous FeCl₃ at room temperature. The gray (PNMPy) and red (PTh and P3MeTh) polymers turned black on doping; the black FeCl₃-doped product was collected by filtration, washed with ether, and dried under vacu-

SPECTROSCOPIC STUDY OF FeCl₃ COMPLEXES

um. Weight increase of the polymer upon doping indicated that PNMPy, PTh, and P3MeTh took 2.0, 0.40, and 0.44 g FeCl₃ per 1.0 g of the polymer.

Measurement

Mössbauer spectra were recorded with a constant-acceleration spectrometer (Austin Science Association, ASA). Data were stored in a pulse height analyzer. The temperature was monitored with a calibrated copper/constantan thermocouple with a variable-temperature cryostat, Type ASAD-4V (ASA). All spectra were fitted to the Lorentzian line shape by using the least squares method [11].

RESULTS AND DISCUSSION

PNMPy

Figure 1 shows Mössbauer spectra of the FeCl₃-doped PNMPy at 300, 196, 77, and 4 K, respectively. The spectra indicate the presence of two distinct types of iron compounds; both Fe³⁺ and Fe²⁺ species give rise to a doublet with smaller and larger quadrupole splittings, respectively, at 196 and 77 K. One of them (Fe³⁺ species) has a lower Debye temperature and is not observed at 300 K. At 4 K, the larger quadrupole doublet splits into six lines arising from the magnetic hyperfine interaction. By taking into account the lower Debye temperature of the Fe³⁺ species, the ratio between Fe²⁺ and Fe³⁺ species is roughly estimated as 1 : 1. The Mössbauer parameters [quadrupole splitting (ΔE_Q), isomer shift (δ), line width (2 Γ , full-width at half maximum), and internal magnetic field (H_{int})] are summarized in Table 1 together with those of the FeCl₃-doped PTh and P3MeTh.

From the values of ΔE_Q , δ , and H_{int} , the iron species having the large quadrupole splitting is identified as FeCl₂ · 2H₂O [12] whereas the other species is FeCl₄ [13]. The FeCl₂ · 2H₂O crystal becomes antiferromagnetic below 23 K and gives 255 kOe (Oe = oersted) for the internal magnetic field [14]. The quadrupole and magnetic hyperfine interactions of FeCl₂ · 2H₂O present in the polymer are remarkably similar to those of crystalline FeCl₂ · 2H₂O crystal in both the paramagnetic and antiferromagnetic regions. This similarity suggests that FeCl₂ · 2H₂O exists as clusters or linear chains in poly(*N*-methyl-2,5-pyrrolylene). As described above, the relative amounts of FeCl₂ · 2H₂O and FeCl₄ are close to 1 : 1

FIG. 1. Mössbauer spectra of $FeCl_3$ -doped PNMPy at 300, 196, 77, and 4 K.

Area ratio (⁰‰) 39 **4** 15 33 5 19 1 (mm/s)^c 0.39 0.54 0.74 0.42 0.51 0.54 0.63 t ۱ L Fe(III) species 57 (s/um) 0.26 0.35 0.42 0.32 0.52 0.50 0.31 I L I ŝ ΔE_Q (mm/s)^a 0.30 0.38 0.27 3 3 3 L ١ ١ ł Area ratio (º⁄a) 100 85 67 8 98 86 61 (mm/s)^c 0.36 0.38 0.40 0.43 0.39 0.35 0.42 0.37 0.39 0.38 0.37 0.31 0.39 5 Fe(II) species 1.32 *H*_{int} (kOe)^d 260 (s/uuu) 1.22 1.12 1.08 1.18 1.25 1.20 1.25 1.15 ŝ $(\eta = 0.23)$ ΔE_Q (mm/s)^a 2.36 2.54 2.61 2.39 1.98 2.37 0.93 2.53 2.26 2.49 2.60 T(K) 196 300 196 77 300 F 30 196 F Ś Polymer **P3MeTh** PNMPy PTh

TABLE 1. Mössbauer Parameters of FeCl₃-Doped PNMPy, PTh, and P3MeTh

^a±0.03.

^bWith respect to the center of an α -Fe metallic foil at room temperature. ± 0.03 .

°±0.02.

^dInternal magnetic field.

when estimated from Mössbauer absorption area measurements at low temperature. The results suggest strongly that the following reactions occur between FeCl₃ and PNMPy.

$$(\bigwedge_{N})_{n} + 2nxFeCl_{3}$$

$$(H_{3})_{n} + 2nxFeCl_{4} - \frac{1}{n} + nxFeCl_{2} \quad (2)$$

$$(2)$$

Formation of similar cationic centers in the π -conjugated polymer by electron transfer to FeCl₃ was previously reported for a poly(acetylene)–FeCl₃ system [15, 16]. Mössbauer studies for FeCl₃-doped poly(acetylene) have clearly indicated that a portion of the FeCl₃ dopant is reduced by electron transfer from poly(acetylene) to give a mixture of FeCl₂ and FeCl₄.

The cation radical formed by Eq. (2) appears to be delocalized along the π -conjugated polymer to give the doped polymer its semiconducting properties. The FeCl₄ species seems to exist as the counteranion to the delocalized cation in the polymer chain. The FeCl₂ species complexes H₂O during work-up of the reaction product. Such absorption of H₂O by FeCl₂ was also reported for the FeCl₃-doped poly(acetylene) system [15].

PTh and P3MeTh

The reaction of PTh with FeCl₃ also led to electron transfer from the polymer to FeCl₃ to generate the Fe²⁺ species. Figure 2 shows the Mössbauer spectra of the FeCl₃-doped PTh at 300, 196, and 77 K.

The Mössbauer signal with a negligible ΔE_Q value (Table 1) is assigned to FeCl₄ [13]. The small differences in the δ and ΔE_Q values of FeCl₄ between the FeCl₃-doped PNMPy and PTh are attributed to the difference in the countercation. Such small changes in the δ and ΔE_Q values by changing the countercation have been reported for [cation][FeCl₄]-type species [13]. In the case of the reaction of PTh, the FeCl₂ species partly absorbed H₂O during the work-up, and two Fe²⁺ cations were observed in the Mössbauer spectrum. One is assigned to anhydrous FeCl₂ [17] and the other to FeCl₂ · H₂O [18].

The reaction of P3MeTh with FeCl₃ also generated Fe²⁺ and Fe³⁺ species (Table 1). The Fe²⁺ species is assigned to FeCl₂ \cdot 2H₂O and the Fe³⁺ species to FeCl₄ as a counteranion of a cation delocalized along P3MeTh.

FIG. 2. Mössbauer spectra of FeCl₃-doped PTh at 300, 196, and 77 K.

As described above, the π -conjugated polymers constituted of 5-membered heterocycles are oxidized by the doping with FeCl₃. p-Type electrically conducting materials with FeCl₄ counteranions and trapped FeCl₂ result.

ACKNOWLEDGMENTS

This research was supported partly by grant-in-aid No. 01470110 and grant-in-aid for Scientific Research on Priority Area of "Macromolecular Complexes (01612002)" and "Multiplex (02231209)."

REFERENCES

- [1] T. A. Skotheim (ed.), *Handbook of Conducting Polymers*, Vols. 1 and 2, Dekker, New York, 1986.
- [2] G. Wegner, Angew. Chem., Int. Ed. Eng., 20, 361 (1981).
- [3] R. H. Baughman, J. L. Bredas, R. R. Chance, R. L. Elsenbaumer, and L. W. Shacklette, *Chem. Rev.*, 82, 209 (1982).
- [4] H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang, and A. J. Heeger, J. Chem. Soc., Chem. Commun., p. 578 (1977).
- [5] K. Tamao, K. Suminani, Y. Kiso, M. Zembayashi, A. Fujioka, S. Kodama, I. Nakajima, A. Minato, and M. Kumada, Bull. Chem. Soc. Jpn., 49, 1958 (1976); R. J. P. Corriu and J. P. Masse, J. Chem. Soc., Chem. Commun., p. 144 (1972); T. Yamamoto, A. Yamamoto, and S. Ikeda, J. Am. Chem. Soc., 93, 3350 (1961); T. Kohara, T. Yamamoto, and A. Yamamoto, J. Organometal. Chem., 192, 265 (1980).
- [6] T. Yamamoto, Y. Hayashi, and A. Yamamoto, Bull. Chem. Soc. Jpn., 51, 2091 (1978).
- [7] T. Yamamoto, K. Sanechika, and A. Yamamoto, J. Polym. Sci., Polym. Lett. Ed., 18, 9 (1980); T. Yamamoto, K. Sanechika, and A. Yamamoto, Bull. Chem. Soc. Jpn., 56, 1497 (1983); Chem. Ind. (London), p. 301 (1982); U.S. Patent 4,521,589 (1985); Polym. Prepr., 28, 966 (1979).
- [8] K. Sanechika, T. Yamamoto, and A. Yamamoto, *Polym. J.*, 13, 255 (1981); T. Yamamoto, T. Taguchi, K. Sanechika, Y. Hayashi, and A. Yamamoto, *Macromolecules*, 16, 1555 (1983).
- [9] I. Khoury, P. Kovacic, and H. M. Gilow, J. Polym. Sci., Polym. Lett. Ed., 19, 395 (1981).

- [10] K. Osakada, T. Wakabayashi, T. Yamamoto, and A. Yamamoto, Nippon Kagaku Kaishi, p. 402 (1986).
- [11] S. Uehara and Y. Maeda, Annu. Rep. Res. Reaction Inst., Kyoto Univ., 11, 189 (1978); H. Sakai, T. Matsuyama, Y. Maeda, and H. Yamaoka, J. Chem. Phys., 75, 5155 (1981).
- [12] B. Brunot, Ibid., 61, 2360 (1974).
- [13] P. R. Edwards and C. E. Johnson, Ibid., 49, 211 (1968).
- [14] C. E. Johnson, Proc. Phys. Soc., 88, 211 (1968).
- [15] H. Sakai, Y. Maeda, T. Koyayashi, and H. Shirakawa, Bull. Chem. Soc. Jpn., 56, 1616 (1983).
- [16] A. Pron, I. Kulszewicz, and J. Przyluski, J. Chem. Soc., Chem. Commun., p. 783 (1981); A. Pron, D. Billaud, I. Kulszewicz, J. Przyluski, and J. Suwalski, Mater. Res. Bull., 16., 1229 (1981).
- [17] K. Ono, A. Ito, and T. Fujita, J. Phys. Soc. Jpn., 19, 2119 (1964).
- [18] B. Brunot, J. Chem. Phys., 61, 2360 (1974).